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Abstract

A new model to detect leaks optimally in liquid pipelines is presented. The model uses the concept based on the Liapunov stability
criteria to evolve a criterion for pipeline leak detection. A flow model was derived for a typical pipeline flow system, and the inclusion of
leak factorkL in the flow model gives an indication of the relative degree of deviation from equilibrium or no leak situation. The numerical
solution by the implicit finite difference scheme was used to solve the transient second-order partial differential equations describing the
flow process. A set of parametric velocity and pressure profiles were generated and validated using industry data. A stability matrix, useful
for determining the eigenvalues (λ’s), evolves from the deviation model of velocity and pressure. A leak is detected whenever any of the
eigenvalues is less than−1, whereas a surge in the pipeline is detected whenever any of the eigenvalues is greater than 1. The simulation
profiles of eigenvalues of a crude oil transporting pipeline segment, of a pipeline network of an operating oil company in the Niger Delta
region of Nigeria, show that pressure deviations are more sensitive parameter for leak detection than volume deviations. Volume deviations
appear to be good indicators for larger leak systems. Single leak situation as well as double leak situations in a pipeline system were
analyzed and discussed.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Most of the conventional leak detection systems to date,
have in general failed to perform optimally within the criteria
of response time, robustness, reliability, sensitivity, accuracy
and cost. A leak detection system, by itself, has no effect on
the technical integrity of the pipeline as it is only installed to
make the operator aware of a leak in order for the operator to
manage the risk of pipeline failure[14]. Several pipeline leak
detection technologies are based on the continuous analysis
of pipeline pressure, temperature, flow and density[11].

A number of models exist in the literature for leak de-
tection. The mass balance model, though a reliable method,
has been found to fail as a sensitive and fast leak detection
system. The key factor in its popularity is its simplicity[8].
The dynamic model is more complicated. This model at-
tempts to mathematically model fluid flow within a pipeline.
It uses hydraulic equation with actual pipeline data to de-
velop expected hydraulic profile. A leak is suspected when
there exist discrepancy patterns between measured and cal-
culated flow; a leak is then declared once a discrepancy
pattern specific to a leak is recognized[3,4,7,9]. This model
fallout because of its mathematical complexity, its inherent
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thresholds, its dependability on the accuracy and availabil-
ity of wide range of instrumentation and its extensive data
requirement[17]. Hence, this form of leak detection is
exposed to a high number of potential false alarms.

The pressure deviation model seems to be the most predic-
tive leak detection method. For example, pressure deviation
can detect relatively small leaks in noisy signal in relative
environment within a time period of between 3 and 8 min
after a surge reaches the monitors. Also, pressure point anal-
ysis only operates during steady-state pipeline conditions.
However, the pressure point analysis method has not been
too successful on large transmission pipelines[10].

We present here a new leak detection model that is uni-
versally applicable to all pipeline/fluid systems. The model
is based on the Liapunov criteria for stability systems. A
leak is detected whenever the evaluated eigenvalues gener-
ated from the derived stability flow matrix (i.e. the Jacobean
of pressure and velocity measurements in time, at specific
sensor spacing) is less than−1. Specifically, the velocity and
pressure measurements are converted to dimensionless vari-
ables over an equilibrium value (VE, PE) to account for error
associated with transients at upstream of sensors. Optimal
leak detection performance is obtained with this model since
only flow or pressure changes are required rather than pre-
cise instrument measurements. The proposed methodology
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Nomenclature

A fluid dimensionless constant
Ac cross-sectional area (m2)
b1 parameter constant
c sonic velocity (m/s)
C fluid dimensionless constant
dc critical hole diameter
D diameter of pipe (m)
DLD leak detection length

downstream (m)
DLU leak detection length

upstream (m)
Es Young’s modulus of steel

210E9 (Pa)
f friction factor
G mass velocity (kg/s m2)
H enthalpy (J/kg)
H0 inlet enthalpy (J/kg)
HL enthalpy of leaking fluid (J/kg)
k friction factor constant
kL leak detection factor
K pipeline separation losses
Kb bulk modulus constant
Keff effective pipe constant
Kj+i separation constant atj andi node
L pipe length (m), mixing length

parameter, Prandtl mixing length
L0 pipe length (m)
LR leak rate (kg/s)
M mass rate (kg/s)
Me mass rate at equilibrium (kg/s)
n counter
P pressure (bar)
Pe pressure at equilibrium (bar)
Pin inlet pressure (bar)
Pout outlet pressure (bar)
P0 initial pressure (bar)
R radial distance (m)
S.D.(λij) standard deviation of eigenvalue
tw pipe wall thickness (m)
�tu time lag for upstream side
�td time lag for downstream side
T time (s), fluid temperature (K)
T0 inlet temperature (K)
u velocity of gas (m/s)
U heat transfer coefficient (J/kg K)
V molar volume (m3/mol)
Ve velocity in equilibrium (m/s)
Vj+1 velocity at gridj + 1 (m/s)
VL velocity of leak (m/s)
VZ velocity in Z-direction (m/s)
V0 initial velocity (m/s)
Z dimensionless velocity

Z pipeline length (m)

Greek symbols
γ pressure error function
γfluid fluid parameter variable
ε velocity error function
ζk deviation function at the forward time
η mass error function
H Jacobean matrix
λij eigenvalues (roots)
µ viscosity
ξ compressibility factor
ρ density of fluid (kg)
τ shear stress (N/m2)
ϕ gas constant parameter
Ωk deviation function at the present time

is proactive to changes in pipeline, detects faster as it simu-
lates on real time the changes in velocity and pressure. This
method has been applied to the some pipeline segment of an
Oil Company operating in the Niger Delta region of Nigeria.
The simulation plots shows that pressure measurements are
more sensitive parameters for leak detection than volume
measurements.

2. Model development and numerical simulation for
liquid pipeline flow systems

2.1. Modeling development

Eq. (1) describes a second-order, non-linear partial dif-
ferential equation useful for describing isothermal tran-
sient flow systems. The model equation was developed
using the Navier–Stokes momentum balance equation, the
steady-state energy equation and the Prandtl correlation for
turbulence shear stress[2]:
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For incompressible flow with a high bulk modulus,Eq. (1):
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where

γfluid 1 = αT + αL

ρ
(6)

F(VZ) = (2K Z + b1
−(n+1)
Z ) (7)

K = 0.5

(
f
Z

D
+
∑
i

eVi

)
(8)
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(9)
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)−n

(10)

f, the friction factor, is evaluated by any suitable correlation
and

∑
i eVi is the summation of all separation losses. We

have used a correlation developed by Shell[13] for evalu-
ating f that is applicable for simplified turbulent flow equa-
tion (9).k2 andn are constants specified for the fluid system
by empirical augments. The basic assumptions for the flow
model presented inEq. (5)are: (i) fluid turbulence is given
by the Prandtl’s mixing length correlation[12,15], (ii) in-
compressibility fluid system, (iii) isothermal conditions and
(iv) no pump work. The dimensionless form ofEq. (5) is
given by the following equation:
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At steady-state condition,Eq. (11) is further simplified to
give the following equation:
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The continuity equation describing mass balance for com-
pressible flow systems within the pipeline is presented in the
following equation:

∂ρ

∂t
+ VZ
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∂Z
+ ρ
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= 0 (14)

The dimensionless form forEq. (14) is given in Eq. (16)
by substituting the dimensionless variables of the following
equation:

℘ = ρ

ρ0
, = Z

Zz

, τ = VZ0t

Zn

(15)

The resulting dimensionless equation is shown in the fol-
lowing equation:
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We now present a model to describe the flow behavior of liq-
uid pipeline leak systems. This model was derived by intro-
ducing a factorkL, into the flow model equation (Eq. (11))
and the continuity equation (Eq. (16)), to giveEqs. (17) and
(18)which are model equations for flow leak and mass leak,
respectively:
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C in Eq. (17)becomes zero when line pack considerations
are negligible.kL1 represents a measure of the degree of
instability which assumes a negative value for a leaking
pipeline system. For incompressible fluid, the mass model
presented inEq. (18)becomes:

℘
∂ Z

∂
= (℘kL L) (19)

FRED model, Fred Model Version 2[18] is a model that
allows the calculation of the potential leak rate in liquid
pipelines given by the use ofEq. (20). Further details can
be obtained from Shell standards DEP publications:

LR = 0.61ρ
Ac

106

√
2

[
105(Pin − Pout)

ρ

]
(20)

whereAc is the cross-sectional area of the leak hole, given
by the following equation:

Ac = 1
4(πd

2
c) (21)

dc is the diameter of the leak hole; 0.61 the assumed dis-
charge coefficient of the hole (orifice).Pin is the fluid (gauge)
pressure in the pipeline, including any static head pressures.
Pout the back pressure gauge outside the pipeline, which can
be evaluated by the following equation:

Pout =
(

1025× 9.81× h

105

)
(22)

h is the water depth andρ the fluid density. The velocityVL
of the liquid pipeline is given by the following equation:

VL = LR

ρAc
= 0.61

106

√
2

[
105(Pin − Pout)

ρ

]
(23)

OnceVL is known,Eqs. (18) and (19)can then be solved.
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2.2. Numerical simulation

Eq. (17) is a transient partial differential equation for a
pipeline leaking system in (r, z) coordinates. We propose a
hypothesis that allows the partial differential equation pre-
sented inEq. (17)in (r andz) to be resolved in thez-axial di-
rection only. This can be derived by transforming the radial
component of flow into the axial component of flow. Using
tanθ as a measure of the relative magnitude of molecular
momentum flux in radial direction to convective momentum
flux in axial direction (seeEq. (24)):
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∂
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HenceEq. (17)can be transformed toEq. (25)by substitut-
ing Eq. (24)into Eq. (17):
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The implicit finite difference scheme is now used to dis-
cretizeEq. (25). The implicit formulation is represented by
the following equation:
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RearrangingEq. (26), results in final implicit formula pre-
sented as the following equation:
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If convective flow transport dominates to make the effect of
molecular transport in radial direction negligible, then, tanθ

becomes zero andEq. (27)becomes:
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j = 1, . . . , n, k = 1, . . . , n (29)

Similarly, the steady flow model presented inEq. (13)can
also be handled as inEq. (24)by transforming radial coordi-
nate system to axial system. HenceEq. (13)can be rewritten
to give the following equation:
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The modified Euler, a predictor–corrector method, can be
used to solve the steady-state flow model, as it gives faster
convergence, stability, and fairly accurate solutions. The ve-
locity at each node is easily obtained from

Vj+1 = V0 j+1 (31)

The pressure model is obtained from the energy balance
equation. The model takes account of separation loss factors
thus

Pj+1 = P0 − ρV 2
j+1

j+1∑
j=0

Kj+1 (32)

whereKj+1 is the separation factor losses up toj+ 1 node.

3. Theory of stability and instability of the flow system

The model to detect leaks in a pipeline is derived by
the application of the theory of stability or instability of
equilibrium flow systems[16]. Suppose that a pipeline is
divided into n-nodes with the defining parameters at each
node asY1, Y2, . . . , YN . If Y ′

1, Y
′
2, . . . , Y

′
N are disturbances

or derivatives of the functionY1, Y2, . . . , YN , and assum-
ing thatY1, Y2, . . . , YN are linearly dependent, a system of
equation evolves:

Y ′
1 = F1(Y1, Y2, . . . , YN),

Y ′
2 = F2(Y1, Y2, . . . , YN), . . . ,

Y ′
n = Fn(Y1, Y2, . . . , YN) (33)

At equilibrium, a point in the pipeline flow vector space
PE(Y

E
1 , Y

E
2 , . . . , Y

E
N) hasFI(Y

E
1 , Y

E
2 , . . . , Y

E
N) = 0 for all

i = 1, . . . , N. Hence, a flow system is at equilibrium if the
vector flow space function remains the same for all future
times. If there is a perturbation, represented by a pointP in
the neighborhoodPE, Liapunov equilibrium states that for
every neighborhoodU of PE in the flow space, there exists a
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small neighborhoodU1, which will remain inU for all t >
0. If all solutions tend to equilibrium ast tends to infinity,
then PE is said to be asymptotically stable. Conversely a
local perturbation like a leak moves the equilibrium from
rest, makingPE unstable. Therefore, a system is said to be
structurally stable if for any sufficiently small perturbation
of the defining equation, the resulting flow is topological
equivalent to the initial one. The vector fieldF(x) of the
whole phase portrait for all individual functionf(x) at the
designated nodes is described by the matrix:


Y ′
1

Y ′
2
...

Y ′
N


 =




0

0
...

0


 (34)

Hence a perturbed vectorG(x) of the same space in the
neighborhood of radius∈ of F(x) is the same field ifF(x)−
G(x) <∈ rendering the flow a stable one. The sketch below
illustrates the concept pictorially where a disturbanceD(x)
moves the vector fieldF(x) to another vector field position
G(x):

4. Application of stability or instability flow systems in
leak detection model

The concept of stability and instability of flow systems
(Liapunov equilibrium stability criteria) was applied to a
transient flow system, to evolve a model for leak detection.
The two-dimensional invertible maps in time and space do-
main for the flow system isτ → z, t, and are presented
for velocity, pressure and mass changes, inEqs. (35)–(37),
respectively.

Vi+1j = F1[Vij,Mij, Pij] (35)

Mi+1j = F2[Vij,Mij, Pij] (36)

Pi+1j = F3[Vij,Mij, Pij] (37)

whereVij, Mij, Pij are the velocity, mass and pressure atj
space node andi time domain, respectively. An equilibrium
point can be defined as the domain of stability where, pres-
sure, velocity and mass changes are steady, therefore,Vij =

VEj,Mij = MEj, Pij = PEj are fixed equilibrium points.
The velocity, mass, and pressure are measured on real time
at the sensors. The velocity and pressure profiles within the
pipeline can be simulated using a suitable numerical tech-
nique to solve the flow or leak model ofEq. (25). For com-
pletely stable flow systems:

Vi+1j = Vij = VEj (38)

Mi+1j = Mij = MEj (39)

Pi+1j = Pij = PEj (40)

VEj = F1[VEj,MEj, PEj] (41)

MEj = F2[VEj,MEj, PEj] (42)

PEj = F3[VEj,MEj, PEj] (43)

Change resulting from a movement from equilibrium state
is presented in the following equations:

Vi+1j = VEj + ξi+1j

= F1[VEj + ξij,MEj + ηij, PEj + γij] (44)

Mi+1j = MEj + ηi+1j

= F2[VEj + ξij,MEj + ηij, PEj + γij] (45)

Pi+1j = PEj + γi+1j

= F3[VEj + ξij,MEj + ηij, PEj + γij] (46)

Expanding the dimensionless form ofEqs. (44)–(46), using
Taylor series and considering only the linear part, results in
a system of equation presented below:

ξi+1j = Aξij + Bηij + Cγij (47)

ηi+1j = Dξij + Eηij + Fγij (48)

γi+1j = Gξij + Hηij + Iγij (49)

The above equations are composed into the following di-
mensional matrix equation:
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J is the Jacobean differential given by the formula:

J = ∂[F1F2F3]

∂[VMP]
(53)

|H − λI|Ωi = 0 is the characteristic equation of the ma-
trix of Eq. (50)from where the eigenvalues or the roots can
easily be evaluated. In this way, the problem is decoupled
into three-dimensional maps and the stability question is an-
swered once the eigenvalues (λ1k, λ2k, λ3k) for each iteration
are known. If the Jacobeans are real and symmetric such that
one would expect real eigenvalues, the system is asymptot-
ically stable if−1 < λ1k, λ2k, λ3k < 1, but unstable ifλ1k,
λ2k, λ3k > 1 in absolute terms. If one of the eigenvalues
λ1k or λ2k or λ3k has modules equal to 1 in absolute value,
then the critical point is established for stability. A leak in a
pipeline causing instability is observed when the simulation
results in at least one of the rootsλ1k, λ2k, λ3k < −1. Sim-
ilarly, a surge causing instability is observed when at least
one of the rootsλ1k, λ2k, λ3k > 1. The absolute value of 1
is the critical bifurcating state. Ifλ1k, λ2k, λ3k are such that,
the Jacobean are complex conjugates (i.e.λ1k, λ2k, λ3k =
α + iβ), the stability criterion for three-dimensional maps
can be solved, where the system is stable (for complex con-
jugates) if all eigenvalues are inside the unit circle, whereas
the system is asymptotically unstable, if at least one of the
eigenvalues is outside the circle.

The stability boundary is the unit circle itself. If the eigen-
values are real there are only two points where they can cross
the stability boundary at 1 and−1. This concept is similar
to saying that the stability condition exist once the Jacobean
is equal to 1 in absolute terms. In order to describe the un-
stable phase portrait, a bifurcation model to assign a relative
magnitude to the disturbed phase is proposed, as the stan-
dard deviation from the critical point, which gives a robust
measure of the width of distribution. These are indicated in
Eqs. (54)–(56)for the eigenvalues:

S.D.(λ1ij) =
√√√√ n∑

i=0

(|λ1ij| − 1)2

n − 1
(54)

S.D.(λ2ij) =
√√√√ n∑

i=0

(|λ2ij| − 1)2

n − 1
(55)

S.D.(λ3ij) =
√√√√ n∑

i=0

(|λ3ij| − 1)2

n − 1
(56)

The standard deviation model evaluates the width of devia-
tion of a typical flow vector point at timei = 0, . . . , n. Once
a leak is suspected at a time envelope, a relative magnitude
of the disturbance can be ascertained. A standard deviation
close to zero indicates a small leak, and vice versa. |λ1ij |,
|λ2ij |, |λ3ij | are the absolute eigenvalue of velocity, mass and
pressure, at a particular time and pipeline node point. Hence,
using the standard deviation model, it is possible to classify

the leak being considered. This model is useful for assign-
ing a value to a disturbance after the eigenvalue criterion for
a leak or surge has been ascertained.

5. Location of leak in a pipeline

When a leak occurs, the resulting leak wave travels at
sonic velocity on the fluid[1]. The time lag between the in-
stance when a leak is detected and when there is no leak is
a measure of the time it takes the leak wave to travel the
distance from the leak source to the sensors upstream and
downstream. The distance traveled is evaluated by multiply-
ing this time lag with the sonic velocityc thus

DLU = c�tu (57)

DLD = c�td (58)

DLA = 1
2(DLU + DLD) (59)

The sonic velocity is given by the following equation:

c =
√

1

((1/Keff) + (DEs/tw))ρ
(60)

The leak size can be estimated from the magnitude of flow
discrepancies. The leak location can also be determined by
two possible methods[14]. They are

(i) least square fit of pressure profile,
(ii) the gradient intersection method.

The least square fit of pressure profile can be used in
the manner described. Once a leak is indicated either by an
identifiable pattern of flow discrepancies or deviations above
mass balance thresholds, then a leak location search is ini-
tiated, where a leak is imposed to the location search pro-
cedure and the resulting pressure profile is checked against
SCADA (Supervisory Control and Data Acquisition) mea-
surements.

Whereas the gradient intersection method is used to locate
a leak by a pseudo steady-state profile, which is calculated
in the forward direction using pipe inlet conditions and in
the reverse direction using pipe outlet conditions. A leak is
located at the intersection of the hydraulic gradient lines.
This method in particular relies on the expectation that a
leak disturbance settles out eventually to a new steady-state
position.

6. Certainty of a leak in a pipeline

The certainty of a leak in a pipeline is obtained by the
number of votes that favor leak relative to the total number
of votes in the operating window. In a typical pipeline, the
possible situations of flow are stable systems, positive un-
stable systems (surge), and negative unstable flow system
(leak), which render the subjective probability for any of
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the events to happen to be 1/3 for each iteration. The occur-
rence of a leak is determined by the results of simulation of
a computer program. Each time the computer program does
an iteration to evaluate the eigenvalues; the activity is syn-
onymous to a random probability experiment. The outcome
of the simulation is the event of chance. If the eigenvalues
have at least one of the rootsλ1k, λ2k, λ3k less than−1 a
leak count is recorded. The number of iterationsn, of the
computer simulation is the total number of votes, whereas,
the numberm that favors leak is the number of times the

Fig. 1. Studied pipeline network system.

outcome of simulation results inλ1k, λ2k, λ3k less than−1.
Baye’s theorem can consequently be applied[5]. The proba-
bility that a leak has occurred is then given by the following
equation:

Pkj(L) = Pkjs(L)

Pkjs(L) + 2Pkjs(NL)
(61)

Eq. (61)is the computed probability at a particular time for
a particular nodej, whereasPkjs(L) is the simulated proba-
bility (m/n). The overall probability for any simulation run
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can be fitted into any of the probability distribution func-
tions (normal distribution, gamma or Poisson) to see which
distribution best predicts the observed trend.

7. Computeranalysis

A computer program was written to simulate the flow and
leak of fluid in a pipeline system. A subroutine program leak
track was developed to detect andtrack leaks in pipelines.
The subroutine examines different leak or no leak status as
discussed inSections 4 and 5above and locates the position
of the leak when there is a deviation from equilibrium. A
subroutine program developed is used to simulate the flow
behavior.

Data supplied by pipeline operators was used to simulate
the flow pressure and velocity within some specified pipeline
segment. A flow diagram of the pipeline subnetwork con-
sidered is presented inFig. 1. Figs. 2 and 3show the flow
chart, for simulating the flow and leak system. The leak and
flow behavior of a crude petroleum pipeline (20 km) seg-
ment, of an operating pipeline network of an oil producing
company in Nigeria was studied. The leak detection study
was chosen forkL factors that simulate the flow behavior.
Different leak scenarios were represented by different leak
factors.

Fig. 2. Flow simulation chart.

8. Discussion of results

8.1. Plot of dynamic simulated pressure and velocity with
pipeline distance at different times for kL = 0.0 (no leak
situation)

Figs. 4 and 5show the dynamic simulated pressure and
velocity profiles, respectively, for different time periods as
functions of pipeline distance for no leak (i.e.kL = 0.0),
for studied pipeline segment of pipeline network. InFig. 5,
the velocity is constant for all process times, which shows
that constant velocity plots indicate no leak. However, for
no leak, the pressure profiles show slight deviation at dif-
ferent times, which can attributed to frictional and valve
loses.

8.2. Plot of dynamic simulated pressure and velocity with
pipeline distance at different times for kL = 1.5 (leak
situation)

For a leak factorkL = 1.5 (Fig. 6), the slopes of the pres-
sure plots were much larger than that inFig. 4 (the no leak
case) and the corresponding velocity profiles exhibit slight
deviations from constancy (Fig. 7). In this case, velocity be-
comes a poor indicator of leak when the leak factor is small
(kL = 1.5).
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Fig. 3. Leak simulation chart.
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Fig. 4. Dynamic simulated pressure profile at various times for pipeline from Opukushi to Tunu M/F for leak situation.

Fig. 5. Dynamic simulated velocity profile at various time for pipeline for Opukushi M/F to Tunu M/F without leak considerations.

Fig. 6. Dynamic simulated pressure profile at various times of pipeline from Opukushi M/F to Tunu M/F with leak considerationskL = 1.5.
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Fig. 7. Dynamic simulated velocity at various time for pipeline from Opukushi M/F to Tunu M/F with leak considerationkL = 1.5.

8.3. Plot of dynamic simulated pressure and velocity with
pipeline distance at different times for kL = 3.0 (leak
situation)

The pressure profiles (seeFig. 8 at kL = 3.0) show more
significant deviations than the case forkL = 1.5. However,
for larger leak factor,kL = 3.0 (Fig. 9), the velocity profiles
deviated significantly from the constant values characteriz-
ing no leak (kL = 0) and relatively small leak (kL = 1.5).
Thus, the leak model used here to predict leak behavior indi-
cates that the pressure measurements are more sensitive pa-

Fig. 8. Dynamic simulated pressure profile at various times of pipeline from Opukushi M/F to Tunu M/F with leak considerations atkL = 3.0.

rameters for leak detection. The volume measurements ap-
pear to be only slightly more sensitive indicators for larger
leak systems. These trends are well supported by Leitko[6],
for long pipelines.

8.4. Plot of eigenvalue pressure and velocity with time for
kL = 1.5 and kL = 3.0 (leak situation) at different node
distance of pipeline segment

We will now compare the velocity and pressure profiles
with their corresponding eigenvalues as indicators for leak
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Fig. 9. Dynamic simulated velocity at various times of pipeline from Opukushi M/F to Tunu M/F with leak considerations atkL = 3.0.

detection. Are the eigenvalue plots more sensitive parame-
ters for leak detection than their corresponding pressure and
volume measurements?

Fig. 10 shows plots of eigenvalues with time for pres-
sure measurements. The pressure waveform oscillates in the
negative portion of thex–y plot. The waveform moves from
a critical point of 1 (stable point) to an unstable position
in the negative part of the plot, exceeding the value of−1
(critical leak point) after 4 s. The clustering of the waveform
is indicative of a small leak. However, for larger leak sys-

Fig. 10. Eigenvalues with time at various distance with leak factorkL = 1.5 for pipeline from Opukushi M/F to Tunu M/F.

tem,kL = 3.0 (Fig. 11), the waveform is more pronounced,
having larger amplitude. The separation of clustering of the
waveform is well defined. The waveform as before moves
from a critical surge point of 1 to an unstable leak position
in the negative region, typical of large leak systems.

However, the observed trend is slightly different for plots
of eigenvalue velocity with time for volume measurement.
Fig. 12shows profiles of eigenvalue with time for a leak fac-
tor of kL = 1.5 at different pipeline distance. The fact that
the waveform of all profiles shifted from a critical value of 1
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Fig. 11. Eigenvalues (pressure) against time at various pipeline distance for a leak factorkL = 3.0 for pipeline from Opukushi M/F to Tunu M/F.

to below−1, attaining a minimum at eigenvalue velocity of
−1.5 at time 25 s, clearly indicates that a leak has occurred.
Fig. 13 shows a more interesting behavior. The eigenvalue
velocity profiles with time for leak factorkL = 3.0 at spe-
cific distance nodes, show waveforms that are exponential
in character and there was no significant deviation from the
case where the leak factorkL = 1.5. This again confirm that
velocity measurements are less sensitive parameters for leak
detection when compared with pressure measurement.

Fig. 12. Eigenvalue (velocity) against time for leak factorkL = 1.5 at various pipeline distance for pipeline from Opukushi M/F to Tunu M/F.

8.5. Plot of eigenvalue velocity with pipeline distance for
studied pipeline network at different times for different leak
factors kL = 1–5

In this section, we shall show that by using eigenvalue vs.
distance plots; we can locate the source of leaks.

Figs. 14–16show the plots of eigenvalue velocity with
pipeline distance for different leak factors at times 24, 48
and 72 s for leak occurring at a point that is located at 1 km
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Fig. 13. Eigenvalue (velocity) against time for leak factorkL = 3.0 at different pipeline distance for pipeline from Opukushi M/F to Tunu M/F.

from the end of the pipe at an upstream location. It is ob-
vious from these plots that the oscillatory behavior of the
waveform is more pronounced for small leaks signified by
small leak factors than for larger leaks signified by larger
leak factors at specific time measurement. For example, the
cluster between waveforms of different leak factors becomes
more distinct with time (compareFigs. 14–16). The sinu-
soidal waveforms, characteristic of the eigenvalue behav-
ior, are so prominent inFigs. 15 and 16(seeSections 8.2
and 8.3). The sinusoidal waveform becomes more defined

Fig. 14. Plot of velocity eigenvalues with pipeline distance for studied pipeline network system at 24 s simulated time.

as time progress, as revealed inFigs. 14–16. These wave-
forms allow us to characterize and locate the source of the
leak. This is so, because the waveforms can be used to eval-
uate the propagation velocity of the particular leak factor
scenario, from where the distance of the leak can be deter-
mined by the product of the propagation velocity and the
instantaneous leak time deviation. The instantaneous leak
time deviation is the deviation in time that has elapsed, be-
tween the last measurements that indicated no leak and the
next measurement that indicated a leak.
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Fig. 15. Plot of eigenvalue velocity with pipeline distance for studied pipeline segment for different leak factor at 48 s.

8.6. Plot of eigenvalue pressure with pipeline distance for
studied pipeline network at different times for different leak
factors kL = 1–5

We shall now explore eigenvalue pressure vs. distance
plots to compare the behavior with the velocity vs. distance
plots described inSection 8.4. This comparison will deter-
mine which of the two plots would be superior for the loca-
tion of a leak.

Figs. 17–19show the plot of eigenvalue pressure with
pipeline distance for different leak factors for leak located at
a point 1 km from the end of the pipe at a downstream loca-
tion. These plots exhibit for different leak factors interesting

Fig. 16. Plot of eigenvalues velocity for different leak factor with time at 72 s.

trends, as the waveform is exponential for a specific eigen-
value interval (i.e. eigenvalue increase between−1.31 and
−1.27, for leak factorkL = 1), and assumes oscillatory be-
havior afterwards. As the leak factor decreases, the trend is
towards higher eigenvalues. The waveforms exhibited here
are unique and distinct and are easily distinguishable from
the portrayals by the eigenvalue velocities (seeSection 8.4).

However, as time progresses, as revealed inFigs. 18
and 19, the maximum peaks become more defined and the
separation between the waveforms become larger when
compared withFig. 17. Furthermore, the behavior after the
maxima showed less oscillation. A simple explanation of
this behavior is now proposed. As time progresses, the leak
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Fig. 17. Plot of eigenvalue pressure with pipeline distance for different leak factor at time 24 s.

Fig. 18. Plot of eigenvalue pressure with pipeline distance for different leak factor atkL = 48 s.

Fig. 19. Plot of eigenvalue pressure with distance for different leak factor for studied pipeline segment at 72 s.
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Fig. 20. Plot of eigenvalues with distance for leak factorkL = 1 at 1 km from upstream side andkL = 1 at 1 km from downstream for time 24 s.

Fig. 21. Plot of eigenvalue velocity with axial distance at time 48 s for leak factor at 1 km from pipeline downstream and upstream side for studied
pipeline segment.

Fig. 22. Plot of eigenvalue velocity with axial distance for different leak factor 1 km upstream and downstream at time 72 s for studied pipeline segment.
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Fig. 23. Plot of eigenvalue velocity with axial velocity for different leak factor at leak distance 1 km upstream and downstream for time 96 s.

waveforms equilibrate from unsteady to steady situation.
These are the characterizing trends of eigenvalue pres-
sure with pipeline distance at different leak factor situa-
tions. It can be deduced that pressure measurements are
more reliable parameters for leak detection than veloc-
ity measurements. In addition, the relative magnitude of
the eigenvalue velocity plots is in the neighborhood that
is less than−1. Although this is located in the negative
region, it is not sufficient to confirm a leak as such. In
comparison, eigenvalue pressure profiles exhibit eigenval-
ues that are much greater in magnitude than−1. Thus,
the pressure would be a more preferable index of locat-
ing a leak. Again, it is possible to locate the leak in a
pipeline by evaluating the propagating velocity from the
waveform and multiplying it by the instantaneous leak time
deviation.

Fig. 24. Plot of eigenvalue pressure with distance for different leak factors for time= 24 s for leak at 1 km upstream and downstream.

8.7. Plot of eigenvalue velocity with distance with two
leaks, one 1 km from upstream end of the pipeline with
kL = 1 and the other leak at 1 km downstream at the end
of the pipeline with varying kL ’s

So far, we have been concerned with a single leak in a
pipeline system. What will happen if there exist a leak at a
location 1 km from one end of a pipeline and another leak
located at 1 km from the other end of the pipe? If the up-
stream leak has a constantkL = 1, what then happens to the
leak located at the downstream end if itskL factors are var-
ied significantly? We shall explore this with the eigenvalue
velocity plots and compare the results of this analysis with
the eigenvalue pressure plots inSection 8.8.

Figs. 20–23show the plot of eigenvalue velocity with dis-
tance for two leak points, 1 km from upstream end of the
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Fig. 25. Plot of eigenvalue pressure with distance for different leak factor for leak at 1 km upstream and downstream for time= 48 s.

pipeline and 1 km from downstream end of the pipeline. The
upstream leak has a leak factor ofkL = 1, while kL factor
for the downstream leak is varied. The plots show that all
waveforms for the different leak situations converge to one
waveform up to a particular distance 14 km away from up-
stream, from where they diverge and become different wave-
forms. From the point of divergence, it is now possible to
identify the individual waveforms. The leak factorkL = 4
at 1 km from downstream side exhibit the largest maximum
peak at time 24 s, the lowest minimum peak a time 48 s, the
largest maximum peak for coordinates (kL = 1.4) and the
least minimum peak for coordinates (kL = 1.2), at time 72 s,
and a largest maximum peak for (kL = 1.5) at time 96 s.
These erratic trends in maxima can be attributed to the sen-
sitivity of the velocity measurements. These trends are the

Fig. 26. Plot of eigenvalue pressure with distance for different leak factor for leak at 1 km downstream and upstream for time 72 s.

characterizing leak behavior for two leak points. It is possi-
ble to locate the leaks from the behavior of the waveforms
and the evaluation of the propagating leak velocity from the
waveform. The product of the propagating leak velocity and
the instantaneous leak time deviation now locates the leak.

8.8. Plot of eigenvalue pressure with distance with two
leaks, one 1 km from upstream end of the pipeline with
kL = 1 and the other leak at 1 km downstream of the end
of the pipeline with varying kL

Figs. 24–27show the eigenvalue pressure waveform with
distance for different leak situations at different times, ap-
plicable for two leaks as described inSection 8.7. It is ob-
vious that during the initiation of a leak, that is at 24 s, the



66 K.E. Abhulimen, A.A. Susu / Chemical Engineering Journal 97 (2004) 47–67

Fig. 27. Plot of eigenvalue pressure with distance for different leak factor for leaks at 1 km from upstream and downstream end for time 96 s.

eigenvalues were all negatives for all leak factors, with the
minimum point reaching as much as−76 for leak factorkL
(1,2). This is far in excess of what was obtained for eigen-
value velocity waveform. The fact that the eigenvalue is
negative and large suggests that a leak waveform with large
amplitude is occurring in the pipeline system. However, a
different waveform emerges as time progresses. At 48 s, the
waveform reverses making all eigenvalues positive with the
waveform ofkL (1,5), having the maximum peak. At 72 and
96 s, however, the waveform for all leak factors combined
to give a single waveform. It may seem that this is the char-
acterizing behavior for a situation with more than one leak.
The reversal in waveform for pressure measurements may
be due to the interference of the waveforms of leak waves
from leak point locations 1 km upstream and downstream of
the pipeline.

9. Conclusions

The following conclusions can be deduced from the dis-
cussion of results:

(i) Pressure measurements are more sensitive parameters
for leak detection than volume measurements.

(ii) The constancy of the plots for velocity measurements
against time indicates a no leak situation with slight de-
viation for small leak; larger deviations were observed
for large leak systems.

(iii) The Liapunov concept of stability for predicting leak
behavior was found suitable for describing leak sys-
tems. All the eigenvalues with time at various pipeline
distance were all negative beyond−1 indicating a leak.

(iv) The sinusoidal waveform characterizes leak behavior
for pressure measurements, whereas the exponential
waveform characterizes velocity measurement.

(v) The waveform for eigenvalue with distance shows that
pressure measurement have more distinct leak wave
patterns than velocity measurement.

(vi) The waveform for the two leak case shows that the ve-
locity and pressure waveforms for different leak situ-
ations combine up to 14 km from where they separate
and exhibit more distinct waveforms.

(vii) The reversal in waveform for the eigenvalue pressure
plots for the two leak cases may be explained by the in-
terfering effect of the two waveforms emanating from
the two leak sources located in the upstream and down-
stream ends of the pipeline system.
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